

Quadrature Encoder Phidget

Contents

1 GETTING STARTED
2 USING THE ENC1000

2.1 Phidget Control Panel

2.1.1 Windows

2.1.2 macOS

2.2 First Look

2.3 Encoder

3 TECHNICAL DETAILS

3.1 General

3.2 Interfacing Encoders

3.3 Connector

3.4 Calculating Velocity

4 WHAT TO DO NEXT

Getting Started
Welcome to the ENC1000 user guide! In order to get started, make sure you have the following hardware on hand:

ENC1000 - Quadrature Encoder Phidget

VINT Hub

Phidget cable

USB cable and computer

Encoder

Next, you will need to connect the pieces:

1. Connect the ENC1000 to the VINT Hub using the Phidget cable.

2. Connect the encoder to the Phidget using an encoder cable.

3. Connect the VINT Hub to your computer using a USB cable.

Now that you have everything together, let's start using the ENC1000!

Using the ENC1000

Phidget Control Panel

In order to demonstrate the functionality of the ENC1000, the Phidget Control Panel running on a Windows machine

will be used.

The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, �nd the icon in the taskbar. If it is not there, open up the start

menu and search for Phidget Control Panel

macOS

TO

TOP

https://www.phidgets.com/products.php?product_id=ENC1000
https://www.phidgets.com/?tier=3&catid=2&pcid=1&prodid=643
https://www.phidgets.com/?view=comparetable&rel=PhidgetCable
https://www.phidgets.com/?view=comparetable&rel=Encoder

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the

Applications list. Double click on the icon to bring up the Phidget Control Panel.

For more information, take a look at the getting started guide for your operating system:

Getting started with Windows

Getting started with macOS

Linux users can follow the getting started with Linux guide and continue reading here for more information about the

ENC1000.

First Look

After plugging the ENC1000 into your computer and opening the Phidget Control Panel, you will see something like

this:

The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

Serial number: allows you to differentiate between similar Phidgets.

Channel: allows you to differentiate between similar objects on a Phidget.

Version number: corresponds to the �rmware version your Phidget is running. If your Phidget is listed in red,

your �rmware is out of date. Update the �rmware by double-clicking the entry.

The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Encoder

Double-click on the Encoder object, labelled Quadrature Encoder Phidget, in order to run the example:

https://www.phidgets.com/docs/OS_-_Windows#Getting_started_with_Windows
https://www.phidgets.com/docs/OS_-_macOS#Getting_started_with_macOS
https://www.phidgets.com/docs/OS_-_Linux#Getting_started_with_Linux

General information about the selected object will be displayed at the top of the window. You can also experiment with

the following functionality:

Position Change: the number of ticks (or quadrature cycles) that have occurred since the last change event.

Time Change: the amount of time in milliseconds that has elapsed since the last change event.

Position: the total position in ticks relative to where the encoder was when the window was opened.

Index Position: the position where the index channel was last encountered. Some encoders do not support

index, check your encoder's datasheet for more information.

Velocity: the average velocity in rotations per second. A CPR must be speci�ed to enable this functionality.

Specify a counts per revolution (CPR) value to enable velocity calculation.

Modify the change trigger and/or data interval value by dragging the sliders. For more information on these

settings, see the data interval/change trigger page.

Modify the IO Mode with the drop-down menu. For more information on IO Mode, see the technical section.

Technical Details

General

The ENC1000 can be used with a wide assortment of mechanical and optical encoders. The encoder should be of

incremental quadrature output type, indicating that there will be two output channels (usually labeled A and B).

The maximum rate of the ENC1000 is speci�ed at 100,000 quadrature cycles per second. In your application, this

number relates directly to the number of revolutions per second you wish to measure, and the number of counts per

revolution speci�ed for your encoder. If your encoder's wheel has 1000 cycles per revolution, then the limit on

measurable revolutions per second is 100 (6000rpm).

Interfacing Encoders

The ENC1000 can connect to any of the encoders we sell without any modi�cation just by setting the EncoderIOMode

property to Push-Pull . If you're trying to use your own encoder, you may need to change the IO mode to Open Collector

or Line Driver mode. Have a look at the Encoder Primer for more details on what to use.

Connector

The encoder input on the ENC1000 uses a 5-pin, 0.100 inch pitch locking connector. The connectors are commonly

available - refer to the Table below for manufacturer part numbers.

https://www.phidgets.com/docs/Data_Rate_and_Change_Trigger
https://www.phidgets.com/?tier=1&catid=4&pcid=2
https://www.phidgets.com/docs/Encoder_Primer#Output_Circuit

ManufacturerPart Number Description

Molex 50-57-9405 5 Position Cable Connector

Molex 16-02-0102 Wire Crimp Insert for Cable Connector

Molex 70543-0004 5 Position Vertical PCB Connector

Molex 70553-0004 5 Position Right-Angle PCB Connector (Gold)

Molex 70553-0039 5 Position Right-Angle PCB Connector (Tin)

Molex 15-91-2055 5 Position Right-Angle PCB Connector - Surface Mount

Note: Most of the above components can be bought at Digikey.

Calculating Velocity

When your program captures an encoder change event, it will receive two variables: positionChange (measured in

'ticks', four of which equal one quadrature count for the ENC1000) and timeChange (measured in milliseconds). You

can use these values to easily compute the instantaneous velocity of the encoder. For example, our C# encoder

example implements this method of velocity calculation:

void enc_change(object sender, Phidget22.Events.EncoderEncoderChangeEventArgs e) {

...

// Convert time change from milliseconds to minutes

double timeChangeMinutes = e.TimeChange / 60000.0;

// Calculate RPM based on the positionChange, timeChange, and encoder CPR (specified by the user)

double rpm = (((double)e.PositionChange / CPR) / timeChangeMinutes);

...

}

This implementation may be useful if you're graphing the RPM on a line graph, but if it's being used to display the

current RPM as a single number, it won't be very helpful because when the motor changes speed or direction

frequently, it'll be hard to read the velocity as a meaningful value. This method can also be prone to variations in

velocity if the encoder's CPR is low and the sampling rate is high. To solve these problems, you should decide on a

time interval during which you'll gather data, and take a moving velocity calculation based on that data. You can use

the Queue data type to make this easy:

http://www.digikey.com/
https://www.phidgets.com/downloads/phidget22/examples/dotnet/csharp/Encoder/Phidget22_Encoder_CSharp_Windows_Ex.zip

Queue<double> positionChangeQueue = new Queue<double>();

Queue<double> timeChangeQueue = new Queue<double>();

void enc_change(object sender, Phidget22.Events.EncoderEncoderChangeEventArgs e) {

double totalPosition = 0;

double totalTime = 0;

int n = 500; // sampling window size, duration is 500*t where t is the data interval of the ENC1000

// add the newest sample to the queue

positionChangeQueue.Enqueue(e.PositionChange);

timeChangeQueue.Enqueue(e.TimeChange);

// If we've exceeded our desired window size, remove the oldest element from the queue

if (positionChangeQueue.Count >= n) {

 positionChangeQueue.Dequeue();

 timeChangeQueue.Dequeue();

}

// Calculate totals for position and time

foreach(double positionChange in positionChangeQueue) {

 totalPosition += positionChange;

}

foreach(double timeChange in timeChangeQueue) {

 totalTime += timeChange;

}

// Convert time change from milliseconds to minutes

double timeChangeMinutes = e.TimeChange / 60000.0;

// Calculate RPM based on the positionChange, timeChange, and encoder CPR (specified by the user)

double rpm = (((double)e.PositionChange / CPR) / timeChangeMinutes);

}

Check out this project for even more information on encoder velocity.

What to do Next
Software Overview - Find your preferred programming language here to learn how to write your own code with

Phidgets!

General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets.

Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.

Phidget22 API - The API is a universal library of all functions and de�nitions for programming with Phidgets.

Just select your language and device and it'll give you a complete list of all properties, methods, events, and

enumerations that are at your disposal.

https://www.phidgets.com/?view=articles&article=EncoderVelocity
https://www.phidgets.com/docs/Software_Overview
https://www.phidgets.com/docs/General_Phidget_Programming
https://www.phidgets.com/?view=api

